{ "id": "1607.01271", "version": "v1", "published": "2016-07-05T14:37:12.000Z", "updated": "2016-07-05T14:37:12.000Z", "title": "Lyapunov exponents and related concepts for entire functions", "authors": [ "Walter Bergweiler", "Xiao Yao", "Jianhua Zheng" ], "comment": "20 pages", "categories": [ "math.DS" ], "abstract": "Let $f$ be an entire function and denote by $f^\\#$ be the spherical derivative of $f$ and by $f^n$ the $n$-th iterate of $f$. For an open set $U$ intersecting the Julia set $J(f)$, we consider how fast $\\sup_{z\\in U} (f^n)^\\#(z)$ and $\\int_U (f^n)^\\#(z)^2 dx\\:dy$ tend to $\\infty$. We also study the growth rate of the sequence $(f^n)^\\#(z)$ for $z\\in J(f)$.", "revisions": [ { "version": "v1", "updated": "2016-07-05T14:37:12.000Z" } ], "analyses": { "keywords": [ "entire function", "lyapunov exponents", "related concepts", "th iterate", "open set" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }