{ "id": "1607.01258", "version": "v1", "published": "2016-07-05T14:21:00.000Z", "updated": "2016-07-05T14:21:00.000Z", "title": "A variation of a congruence of Subbarao for n=2^(alpha)*5^(beta)", "authors": [ "Sanda Bujačić" ], "categories": [ "math.NT" ], "abstract": "There are many open problems concerning the characterization of the positive integers $n$ fulfilling certain congruences and involving the Euler totient function $\\varphi$ and the sum of positive divisors function $\\sigma$ of the positive integer $n$. In this work, we deal with the congruence of the form $$ n\\varphi(n)\\equiv2\\pmod{\\sigma(n)} $$ and we prove that the only positive integers of the form $2^{\\alpha}5^{\\beta}, \\enspace \\alpha, \\beta\\geq0,$ that satisfy the above congruence are $n=1, 2, 5, 8$.", "revisions": [ { "version": "v1", "updated": "2016-07-05T14:21:00.000Z" } ], "analyses": { "keywords": [ "congruence", "positive integer", "euler totient function", "positive divisors function", "characterization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }