{ "id": "1607.01098", "version": "v1", "published": "2016-07-05T02:51:51.000Z", "updated": "2016-07-05T02:51:51.000Z", "title": "On the Fourier Transform of Bessel Functions over Complex Numbers - II: the General Case", "authors": [ "Zhi Qi" ], "comment": "21 pages", "categories": [ "math.CA" ], "abstract": "In this paper, we prove an exponential integral formula for the Fourier transform of Bessel functions over complex numbers, along with a radial exponential integral formula. The former will enable us to develop the complex spectral theory of the relative trace formula for the Shimura-Waldspurger correspondence and extend the Waldspurger formula from totally real fields to arbitrary number fields.", "revisions": [ { "version": "v1", "updated": "2016-07-05T02:51:51.000Z" } ], "analyses": { "subjects": [ "42B10", "33C10" ], "keywords": [ "bessel functions", "complex numbers", "fourier transform", "general case", "radial exponential integral formula" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }