{ "id": "1607.01095", "version": "v1", "published": "2016-07-05T02:33:28.000Z", "updated": "2016-07-05T02:33:28.000Z", "title": "On the generators of the polynomial algebra as a module over the Steenrod algebra", "authors": [ "Dang Vo Phuc", "Nguyen Sum" ], "comment": "9 pages. The detailed proof of Theorem 3.10 of this paper was accepted for publication in Acta Mathematica Vietnamica, available online at arXiv:1502.05569", "journal": "Comptes Rendus Mathematique, Volume 353, Issue 11, November 2015, Pages 1035-1040", "doi": "10.1016/j.crma.2015.09.002", "categories": [ "math.AT" ], "abstract": "Let $P_k:= \\mathbb F_2[x_1,x_2,\\ldots,x_k]$ be the polynomial algebra over the prime field of two elements, $\\mathbb F_2$, in $k$ variables $x_1, x_2, \\ldots, x_k$, each of degree 1. We are interested in the Peterson hit problem of finding a minimal set of generators for $P_k$ as a module over the mod-2 Steenrod algebra, $\\mathcal{A}$. In this paper, we study the hit problem in degree $(k-1)(2^d-1)$ with $d$ a positive integer. Our result implies the one of Mothebe [4,5].", "revisions": [ { "version": "v1", "updated": "2016-07-05T02:33:28.000Z" } ], "analyses": { "subjects": [ "55S10", "55S05", "55T15" ], "keywords": [ "polynomial algebra", "steenrod algebra", "generators", "peterson hit problem", "prime field" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }