{ "id": "1607.00857", "version": "v1", "published": "2016-07-04T12:34:24.000Z", "updated": "2016-07-04T12:34:24.000Z", "title": "On the stabilisation height of fibre surfaces in $S^3$", "authors": [ "Sebastian Baader", "Filip Misev" ], "comment": "9 pages", "categories": [ "math.GT" ], "abstract": "The stabilisation height of a fibre surface in the 3-sphere is the minimal number of Hopf plumbing operations needed to attain a stable fibre surface from the initial surface. We show that families of fibre surfaces related by iterated Stallings twists have unbounded stabilisation height.", "revisions": [ { "version": "v1", "updated": "2016-07-04T12:34:24.000Z" } ], "analyses": { "keywords": [ "minimal number", "iterated stallings twists", "initial surface", "hopf plumbing operations", "stable fibre surface" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }