{ "id": "1607.00563", "version": "v1", "published": "2016-07-02T21:20:14.000Z", "updated": "2016-07-02T21:20:14.000Z", "title": "On the additive bases problem in finite fields", "authors": [ "Hamed Hatami", "Victoria de Quehen" ], "categories": [ "math.CO" ], "abstract": "We prove that if $G$ is an Abelian group and $A_1,\\ldots,A_k \\subseteq G$ satisfy $m A_i=G$ (the $m$-fold sumset), then $A_1+\\ldots+A_k=G$ provided that $k \\ge c_m \\log n$. This generalizes a result of Alon, Linial, and Meshulam [Additive bases of vector spaces over prime fields. J. Combin. Theory Ser. A, 57(2):203--210, 1991] regarding the so called additive bases.", "revisions": [ { "version": "v1", "updated": "2016-07-02T21:20:14.000Z" } ], "analyses": { "subjects": [ "11B13" ], "keywords": [ "additive bases problem", "finite fields", "fold sumset", "abelian group", "vector spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }