{ "id": "1606.09532", "version": "v1", "published": "2016-06-30T15:11:02.000Z", "updated": "2016-06-30T15:11:02.000Z", "title": "An application of TQFT to modular representation theory", "authors": [ "Patrick M. Gilmer", "Gregor Masbaum" ], "comment": "20 pages, 3 figures", "categories": [ "math.RT", "math.GT", "math.QA" ], "abstract": "For p>3 a prime, and g>2 an integer, we use Topological Quantum Field Theory (TQFT) to study a family of p-1 highest weight modules L_p(lambda) for the symplectic group Sp(2g,K) where K is an algebraically closed field of characteristic p. This permits explicit formulae for the dimension and the formal character of L_p(lambda) for these highest weights.", "revisions": [ { "version": "v1", "updated": "2016-06-30T15:11:02.000Z" } ], "analyses": { "keywords": [ "modular representation theory", "application", "symplectic group sp", "highest weight modules", "topological quantum field theory" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }