{ "id": "1606.09138", "version": "v1", "published": "2016-06-29T14:56:37.000Z", "updated": "2016-06-29T14:56:37.000Z", "title": "Classical formulae on projective surfaces and $3$-folds with ordinary singularities, revisited", "authors": [ "Takahisa Sasajima", "Toru Ohmoto" ], "comment": "17 pages", "categories": [ "math.AG", "math.AT" ], "abstract": "As an application of universal polynomials for local and multi-singularities of maps, we revisit classical formulae of Salmon-Cayley-Zeuthen for projective surfaces and analogous formulae of Segre-Severi-Roth for projective $3$-folds. In particular, several examples of actual computation are given using universal polynomials for computing weighted Euler characteristics of singularity loci.", "revisions": [ { "version": "v1", "updated": "2016-06-29T14:56:37.000Z" } ], "analyses": { "keywords": [ "projective surfaces", "ordinary singularities", "universal polynomials", "revisit classical formulae", "singularity loci" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }