{ "id": "1606.08840", "version": "v1", "published": "2016-06-28T19:54:40.000Z", "updated": "2016-06-28T19:54:40.000Z", "title": "Parabolic Conjugation and Commuting Varieties", "authors": [ "Magdalena Boos", "Michaƫl Bulois" ], "comment": "Comments welcome", "categories": [ "math.RT", "math.AG" ], "abstract": "We consider the conjugation-action of an arbitrary upper-block parabolic subgroup of the general linear group on the variety of nilpotent matrices in its Lie algebra. Lie-theoretically, it is natural to wonder about the number of orbits of this action. We translate the setup to a representation-theoretic one and obtain a finiteness criterion which classifies all actions with only a finite number of orbits over an arbitrary infinite field. These results are applied to commuting varieties and nested punctual Hilbert schemes.", "revisions": [ { "version": "v1", "updated": "2016-06-28T19:54:40.000Z" } ], "analyses": { "subjects": [ "16G20", "14R20", "14C05", "17B08" ], "keywords": [ "commuting varieties", "parabolic conjugation", "arbitrary upper-block parabolic subgroup", "arbitrary infinite field", "nested punctual hilbert schemes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }