{ "id": "1606.08690", "version": "v1", "published": "2016-06-28T13:33:31.000Z", "updated": "2016-06-28T13:33:31.000Z", "title": "On the number of prime factors of Mersenne numbers", "authors": [ "AbĂ­lio Lemos", "Ady Cambraia Junior" ], "categories": [ "math.NT" ], "abstract": "Let $n$ a positive integer, $M_n=2^n-1$ the $n$th Mersenne number and $\\omega(n)$ the number of distinct prime divisors of $n$. We present a description of the Mersenne numbers satisfying $\\omega(M_n)\\leq3$. Moreover, we prove that the inequality, for $\\epsilon>0$, $\\omega(M_n)> 2^{(1-\\epsilon)\\log\\log n} -3 $ holds almost all positive integer $n$.", "revisions": [ { "version": "v1", "updated": "2016-06-28T13:33:31.000Z" } ], "analyses": { "keywords": [ "prime factors", "th mersenne number", "positive integer", "distinct prime divisors" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }