{ "id": "1606.08126", "version": "v1", "published": "2016-06-27T05:18:22.000Z", "updated": "2016-06-27T05:18:22.000Z", "title": "On the Geometric Regularity Conditions for the 3D Navier-Stokes Equations", "authors": [ "Dongho Chae", "Jihoon Lee" ], "comment": "9 pages", "categories": [ "math.AP" ], "abstract": "Let $v$ and $\\omega$ be the velocity and the vorticity of a suitable weak solutions of the 3D Navier-Stokes equations in a space-time domain containing $z_0= (x_0, t_0)$, and let $Q_{z_0, r}=B_{x_0, r} \\times (t_0-r^2, t_0)$ be a parabolic cylinder in the domain. We show that if either $\\left(v \\times \\frac{\\omega}{|\\omega|}\\right) \\cdot \\frac{\\nabla \\times \\omega}{|\\nabla \\times \\omega|} \\in L^{\\gamma, \\alpha}_{x,t}(Q_{z_0, r})$ with $\\frac{3}{\\gamma}+\\frac{2}{\\alpha} \\leq 1$, or $\\left(\\omega \\times \\frac{v}{|v|}\\right) \\cdot \\frac{\\nabla \\times \\omega}{|\\nabla \\times \\omega|} \\in L^{\\gamma, \\alpha}_{x,t}(Q_{z_0, r})$ with $\\frac{3}{\\gamma}+\\frac{2}{\\alpha} \\leq 2$, ($\\gamma \\geq 2$, $\\alpha \\geq 2$), where $L^{\\gamma, \\alpha}_{x,t}$ denote the Serrin type of class, then $z_0$ is a regular point for $v$. This improves previous local regularity criteria for the suitable weak solutions.", "revisions": [ { "version": "v1", "updated": "2016-06-27T05:18:22.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D03", "76D05" ], "keywords": [ "3d navier-stokes equations", "geometric regularity conditions", "suitable weak solutions", "local regularity criteria", "parabolic cylinder" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }