{ "id": "1606.07833", "version": "v1", "published": "2016-06-24T20:40:15.000Z", "updated": "2016-06-24T20:40:15.000Z", "title": "Square of Hamilton cycle in a random graph", "authors": [ "Andrzej Dudek", "Alan Frieze" ], "categories": [ "math.CO" ], "abstract": "We show that if $\\beta>0$ is constant and $p\\geq \\sqrt{\\frac{\\beta\\log n}{n}}$ then w.h.p. the random graph $G_{n,p}$ contains the square of a Hamilton cycle. This improves the previous results of K\\\"uhn and Osthus and also Nenadov and \\v{S}kori\\'c.", "revisions": [ { "version": "v1", "updated": "2016-06-24T20:40:15.000Z" } ], "analyses": { "keywords": [ "hamilton cycle", "random graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }