{ "id": "1606.07706", "version": "v1", "published": "2016-06-24T14:42:09.000Z", "updated": "2016-06-24T14:42:09.000Z", "title": "Geometry and Topology of the space of Kähler metrics on singular varieties", "authors": [ "Eleonora Di Nezza", "Vincent Guedj" ], "comment": "45 pages. arXiv admin note: substantial text overlap with arXiv:1401.7857", "categories": [ "math.DG", "math.CV" ], "abstract": "Let $Y$ be a compact K\\\"ahler normal space and $\\alpha \\in H^{1,1}(Y,\\mathbb{R})$ a K\\\"ahler class. We study metric properties of the space $\\mathcal{H}_\\alpha$ of K\\\"ahler metrics in $\\alpha$ using Mabuchi geodesics. We extend several results by Calabi, Chen, Darvas previously established when the underlying space is smooth. As an application we analytically characterize the existence of K\\\"ahler-Einstein metrics on $\\mathbb{Q}$-Fano varieties, generalizing a result of Tian, and illustrate these concepts in the case of toric varieties.", "revisions": [ { "version": "v1", "updated": "2016-06-24T14:42:09.000Z" } ], "analyses": { "keywords": [ "kähler metrics", "singular varieties", "study metric properties", "normal space", "mabuchi geodesics" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable" } } }