{ "id": "1606.07664", "version": "v1", "published": "2016-06-24T12:46:54.000Z", "updated": "2016-06-24T12:46:54.000Z", "title": "A Glivenko-Cantelli Theorem for almost additive functions", "authors": [ "Christoph Schumacher", "Fabian Schwarzenberger", "Ivan Veselic" ], "comment": "31 pages, to appear in Stochastic Processes and Applications", "doi": "10.1016/j.spa.2016.06.005", "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "We develop a Glivenko--Cantelli theory for monotone, almost additive functions of i.\\,i.\\,d.\\ sequences of random variables indexed by~$\\Z^d$. Under certain conditions on the random sequence, short range correlations are allowed as well. We have an explicit error estimate, consisting of a probabilistic and a geometric part. We apply the results to yield uniform convergence for several quantities arising naturally in statistical physics.", "revisions": [ { "version": "v1", "updated": "2016-06-24T12:46:54.000Z" } ], "analyses": { "subjects": [ "60F99", "60B12", "62E20", "60K35" ], "keywords": [ "additive functions", "glivenko-cantelli theorem", "short range correlations", "explicit error estimate", "yield uniform convergence" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }