{ "id": "1606.07595", "version": "v1", "published": "2016-06-24T08:13:02.000Z", "updated": "2016-06-24T08:13:02.000Z", "title": "On hypersurfaces of $\\mathbb{S}^2\\times\\mathbb{S}^2$", "authors": [ "Francisco Urbano" ], "comment": "32 pages", "categories": [ "math.DG" ], "abstract": "We classify the homogeneous and isoparametric hypersurfaces of $\\mathbb{S}^2\\times\\mathbb{S}^2$. In the classification, besides the hypersurfaces $\\mathbb{S}^1(r)\\times\\mathbb{S}^2,\\,r\\in (0,1]$, it appears a family of hypersurfaces with three different constant principal curvatures and zero Gauss-Kronecker curvature. Also we classify the hypersurfaces of $\\mathbb{S}^2\\times\\mathbb{S}^2$ with at most two constant principal curvatures and, under certain conditions, with three constant principal curvatures.", "revisions": [ { "version": "v1", "updated": "2016-06-24T08:13:02.000Z" } ], "analyses": { "keywords": [ "constant principal curvatures", "zero gauss-kronecker curvature", "isoparametric hypersurfaces", "classification" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }