{ "id": "1606.07566", "version": "v1", "published": "2016-06-24T04:42:28.000Z", "updated": "2016-06-24T04:42:28.000Z", "title": "Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\\frac 12} (\\mathbb{R})$", "authors": [ "Zihua Guo", "Yifei Wu" ], "comment": "8 pages", "categories": [ "math.AP" ], "abstract": "We prove that the derivative nonlinear Schr\\\"{o}dinger equation is globally well-posed in $H^{\\frac 12} (\\mathbb{R})$ when the mass of initial data is strictly less than $4\\pi$.", "revisions": [ { "version": "v1", "updated": "2016-06-24T04:42:28.000Z" } ], "analyses": { "subjects": [ "35Q55" ], "keywords": [ "derivative nonlinear schrödinger equation", "global well-posedness", "initial data" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }