{ "id": "1606.07476", "version": "v1", "published": "2016-06-23T21:03:01.000Z", "updated": "2016-06-23T21:03:01.000Z", "title": "An uncertainty principle and lower bounds for the Dirichlet Laplacian on graphs", "authors": [ "Daniel Lenz", "Peter Stollmann", "Gunter Stolz" ], "comment": "27 pages", "categories": [ "math.FA" ], "abstract": "We prove a quantitative uncertainty principle at low energies for the Laplacian on fairly general weighted graphs with a uniform explicit control of the constants in terms of geometric quantities. A major step consists in establishing lower bounds for Dirichlet eigenvalues in terms of the geometry.", "revisions": [ { "version": "v1", "updated": "2016-06-23T21:03:01.000Z" } ], "analyses": { "keywords": [ "dirichlet laplacian", "major step consists", "uniform explicit control", "establishing lower bounds", "low energies" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }