{ "id": "1606.07034", "version": "v1", "published": "2016-06-22T18:23:04.000Z", "updated": "2016-06-22T18:23:04.000Z", "title": "The log-Sobolev inequality with quadratic interactions", "authors": [ "Ioannis Papageorgiou" ], "comment": "42 pages", "categories": [ "math.FA", "math-ph", "math.MP", "math.PR" ], "abstract": "We assume one site measures without a boundary $e^{-\\phi(x)}dx/Z$ that satisfy a log-Sobolev inequality. We prove that if these measures are perturbed with quadratic interactions, then the associated infinite dimensional Gibbs measure on the lattice always satisfies a log-Sobolev inequality. Furthermore, we present examples of measures that satisfy the inequality with a phase that goes beyond convexity at infinity.", "revisions": [ { "version": "v1", "updated": "2016-06-22T18:23:04.000Z" } ], "analyses": { "subjects": [ "26D10", "82C22", "82B20", "35R03" ], "keywords": [ "log-sobolev inequality", "quadratic interactions", "associated infinite dimensional gibbs measure", "site measures" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable" } } }