{ "id": "1606.06939", "version": "v1", "published": "2016-06-22T13:18:53.000Z", "updated": "2016-06-22T13:18:53.000Z", "title": "On bases of some simple modules of symmetric groups and Hecke algebras", "authors": [ "Melanie de Boeck", "Anton Evseev", "Sinead Lyle", "Liron Speyer" ], "comment": "Comments are welcome", "categories": [ "math.RT" ], "abstract": "We consider simple modules for a Hecke algebra with a parameter of quantum characteristic $e$. Equivalently, we consider simple modules $D^{\\lambda}$, labelled by $e$-restricted partitions $\\lambda$ of $n$, for a cyclotomic KLR algebra $R_n^{\\Lambda_0}$ over a field of characteristic $p\\ge 0$, with mild restrictions on $p$. If all parts of $\\lambda$ are at most $2$, we identify a set $\\mathsf{DStd}_{e,p}(\\lambda)$ of standard $\\lambda$-tableaux, which is defined combinatorially and naturally labels a basis of $D^{\\lambda}$. In particular, we prove that the $q$-character of $D^{\\lambda}$ can be described in terms of $\\mathsf{DStd}_{e,p}(\\lambda)$. We show that a certain natural approach to constructing a basis of an arbitrary $D^{\\lambda}$ does not work in general, giving a counterexample to a conjecture of Mathas.", "revisions": [ { "version": "v1", "updated": "2016-06-22T13:18:53.000Z" } ], "analyses": { "subjects": [ "20C30", "20C08", "05E10" ], "keywords": [ "simple modules", "hecke algebra", "symmetric groups", "cyclotomic klr algebra", "natural approach" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }