{ "id": "1606.06934", "version": "v1", "published": "2016-06-22T13:03:38.000Z", "updated": "2016-06-22T13:03:38.000Z", "title": "Estimation for stochastic damping Hamiltonian systems under partial observation. III. Diffusion term", "authors": [ "Patrick Cattiaux", "José R. León", "Clémentine Prieur" ], "comment": "Published at http://dx.doi.org/10.1214/15-AAP1126 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Applied Probability 2016, Vol. 26, No. 3, 1581-1619", "doi": "10.1214/15-AAP1126", "categories": [ "math.PR" ], "abstract": "This paper is the third part of our study started with Cattiaux, Le\\'{o}n and Prieur [Stochastic Process. Appl. 124 (2014) 1236-1260; ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014) 359-384]. For some ergodic Hamiltonian systems, we obtained a central limit theorem for a nonparametric estimator of the invariant density [Stochastic Process. Appl. 124 (2014) 1236-1260] and of the drift term [ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014) 359-384], under partial observation (only the positions are observed). Here, we obtain similarly a central limit theorem for a nonparametric estimator of the diffusion term.", "revisions": [ { "version": "v1", "updated": "2016-06-22T13:03:38.000Z" } ], "analyses": { "keywords": [ "stochastic damping hamiltonian systems", "partial observation", "diffusion term", "central limit theorem", "stochastic process" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }