{ "id": "1606.06930", "version": "v1", "published": "2016-06-22T12:50:08.000Z", "updated": "2016-06-22T12:50:08.000Z", "title": "Semidefinite bounds for mixed binary/ternary codes", "authors": [ "Bart Litjens" ], "comment": "12 pages", "categories": [ "math.CO", "math.OC", "math.RT" ], "abstract": "For nonnegative integers $n_2, n_3$ and $d$, let $N(n_2,n_3,d)$ denote the maximum cardinality of a code of length $n_2+n_3$, with $n_2$ binary coordinates and $n_3$ ternary coordinates (in this order) and with minimum distance at least $d$. For a nonnegative integer $k$, let $\\mathcal{C}_k$ denote the collection of codes of cardinality at most $k$. For $D \\in \\mathcal{C}_k$, define $S(D) := \\{C \\in \\mathcal{C}_k \\mid D \\subseteq C, |D| +2|C\\setminus D| \\leq k\\}$. Then $N(n_2,n_3,d)$ is upper bounded by the maximum value of $\\sum_{v \\in [2]^{n_2}[3]^{n_3}}x(\\{v\\})$, where $x$ is a function $\\mathcal{C}_k \\rightarrow \\mathbb{R}$ such that $x(\\emptyset) = 1$ and $x(C) = 0$ if $C$ has minimum distance less than $d$, and such that the $S(D)\\times S(D)$ matrix $(x(C\\cup C'))_{C,C' \\in S(D)}$ is positive semidefinite for each $D \\in \\mathcal{C}_k$. By exploiting symmetry, the semidefinite programming problem for the case $k=3$ is reduced using representation theory. It yields $134$ new upper bounds that are provided in tables", "revisions": [ { "version": "v1", "updated": "2016-06-22T12:50:08.000Z" } ], "analyses": { "subjects": [ "94B65", "05E10", "90C22", "20C30" ], "keywords": [ "mixed binary/ternary codes", "semidefinite bounds", "minimum distance", "nonnegative integer", "maximum value" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }