{ "id": "1606.06929", "version": "v1", "published": "2016-06-22T12:43:32.000Z", "updated": "2016-06-22T12:43:32.000Z", "title": "Partitions of the set of nonnegative integers with the same representation functions", "authors": [ "Sándor Z. Kiss", "Csaba Sándor" ], "categories": [ "math.NT" ], "abstract": "For a set of nonnegative integers $S$ let $R_{S}(n)$ denote the number of unordered representations of the integer $n$ as the sum of two different terms from $S$. In this paper we focus on partitions of the natural numbers into two sets affording identical representation functions. We solve a recent problem of Lev and Chen.", "revisions": [ { "version": "v1", "updated": "2016-06-22T12:43:32.000Z" } ], "analyses": { "keywords": [ "nonnegative integers", "partitions", "sets affording identical representation functions", "natural numbers", "unordered representations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }