{ "id": "1606.06886", "version": "v1", "published": "2016-06-22T10:39:29.000Z", "updated": "2016-06-22T10:39:29.000Z", "title": "Global Regularity for Supercritical Nonlinear Dissipative Wave Equations in 3D", "authors": [ "Kyouhei Wakasa", "Borislav Yordanov" ], "comment": "13 pages", "categories": [ "math.AP" ], "abstract": "The nonlinear wave equation $u_{tt}-\\Delta u +|u_t|^{p-1}u_t=0$ is shown to be globally well-posed in the Sobolev spaces of radially symmetric functions $H^k_{\\rm rad}({\\bf R}^3)\\times H^{k-1}_{\\rm rad}({\\bf R}^3)$ for all $p\\geq 3$ and $k\\geq 3$. Moreover, global $C^\\infty $ solutions are obtained when the initial data are $C_0^\\infty$ and exponent $p$ is an odd integer. The radial symmetry allows a reduction to the one-dimensional case where an important observation of A. Haraux (2009) can be applied, i.e., dissipative nonlinear wave equations contract initial data in $W^{k,q}({\\bf R})\\times W^{k-1,q}({\\bf R})$ for all $k\\in[1,2]$ and $q\\in [1,\\infty]$.", "revisions": [ { "version": "v1", "updated": "2016-06-22T10:39:29.000Z" } ], "analyses": { "subjects": [ "35L70", "35A05" ], "keywords": [ "supercritical nonlinear dissipative wave equations", "global regularity", "nonlinear wave equations contract", "equations contract initial data", "wave equations contract initial" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }