{ "id": "1606.06342", "version": "v1", "published": "2016-06-20T21:33:33.000Z", "updated": "2016-06-20T21:33:33.000Z", "title": "Power-free values of polynomials on symmetric varieties", "authors": [ "T. D. Browning", "A. Gorodnik" ], "comment": "47 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "Given a symmetric variety Y defined over the rationals and a non-zero polynomial with integer coefficients, we use techniques from homogeneous dynamics to establish conditions under which the polynomial can be made r-free for a Zariski dense set of integral points on Y. We also establish an asymptotic counting formula for this set. In the special case that Y is a quadric hypersurface, we give explicit bounds on the size of r by combining the argument with a uniform upper bound for the density of integral points on general affine quadrics.", "revisions": [ { "version": "v1", "updated": "2016-06-20T21:33:33.000Z" } ], "analyses": { "subjects": [ "11N32", "11D09", "11D45", "20G30" ], "keywords": [ "symmetric variety", "power-free values", "integral points", "general affine quadrics", "uniform upper bound" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }