{ "id": "1606.06151", "version": "v1", "published": "2016-06-20T14:50:28.000Z", "updated": "2016-06-20T14:50:28.000Z", "title": "Classification of 8-dimensional rank two commutative semifields", "authors": [ "Michel Lavrauw", "Morgan Rodgers" ], "categories": [ "math.CO" ], "abstract": "We classify the rank two commutative semifields which are 8-dimensional over their center $\\mathbb{F}_{q}$. This is done using computational methods utilizing the connection to linear sets in $\\mathrm{PG}(2,q^{4})$. We then apply our methods to complete the classification of rank two commutative semifields which are 10-dimensional over $\\mathbb{F}_{3}$. The implications of these results are detailed for other geometric structures such as semifield flocks, ovoids of parabolic quadrics, and eggs.", "revisions": [ { "version": "v1", "updated": "2016-06-20T14:50:28.000Z" } ], "analyses": { "subjects": [ "51E20", "12K10" ], "keywords": [ "commutative semifields", "classification", "parabolic quadrics", "geometric structures", "semifield flocks" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }