{ "id": "1606.05502", "version": "v1", "published": "2016-06-17T12:40:53.000Z", "updated": "2016-06-17T12:40:53.000Z", "title": "Stark units in positive characteristic", "authors": [ "Bruno Anglès", "Tuan Ngo Dac", "Floric Tavares Ribeiro" ], "categories": [ "math.NT" ], "abstract": "We show that the module of Stark units associated to a sign-normalized rank one Drinfeld module can be obtained from Anderson's equivariant $A$-harmonic series. We apply this to obtain a class formula \\`a la Taelman and to prove a several variable log-algebraicity theorem, generalizing Anderson's log-algebraicity theorem. We also give another proof of Anderson's log-algebraicity theorem using shtukas and obtain various results concerning the module of Stark units for Drinfeld modules of arbitrary rank.", "revisions": [ { "version": "v1", "updated": "2016-06-17T12:40:53.000Z" } ], "analyses": { "keywords": [ "stark units", "positive characteristic", "drinfeld module", "generalizing andersons log-algebraicity theorem", "harmonic series" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }