{ "id": "1606.05173", "version": "v1", "published": "2016-06-16T13:07:26.000Z", "updated": "2016-06-16T13:07:26.000Z", "title": "Partial $W^{2,p}$ regularity for optimal transport maps", "authors": [ "Shibing Chen", "Alessio Figalli" ], "categories": [ "math.AP" ], "abstract": "We prove that, in the optimal transportation problem with general costs and positive continuous densities, the potential function is always of class $W^{2,p}_{loc}$ for any $p \\geq 1$ outside of a closed singular set of measure zero. We also establish global $W^{2,p}$ estimates when the cost is a small perturbation of the quadratic cost. The latter result is new even when the cost is exactly the quadratic cost.", "revisions": [ { "version": "v1", "updated": "2016-06-16T13:07:26.000Z" } ], "analyses": { "keywords": [ "optimal transport maps", "regularity", "quadratic cost", "optimal transportation problem", "potential function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }