{ "id": "1606.04629", "version": "v1", "published": "2016-06-15T03:21:58.000Z", "updated": "2016-06-15T03:21:58.000Z", "title": "Uniform boundary regularity in almost-periodic homogenization", "authors": [ "Jinping Zhuge" ], "comment": "29 pages", "categories": [ "math.AP" ], "abstract": "In the present paper, we generalize the theory of quantitative homogenization for second-order elliptic systems with rapidly oscillating coefficients in $APW^2(\\mathbb{R}^d)$, which is the space of almost-periodic functions in the sense of H. Weyl. We obtain the large scale uniform boundary Lipschitz estimate, for both Dirichlet and Neumann problems in $C^{1,\\alpha}$ domains. We also obtain large scale uniform boundary H\\\"{o}lder estimates in $C^{1,\\alpha}$ domains and $L^2$ Rellich estimates in Lipschitz domains.", "revisions": [ { "version": "v1", "updated": "2016-06-15T03:21:58.000Z" } ], "analyses": { "subjects": [ "35B27", "35J57", "35B65" ], "keywords": [ "uniform boundary regularity", "almost-periodic homogenization", "scale uniform boundary lipschitz estimate", "large scale uniform boundary lipschitz" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }