{ "id": "1606.04137", "version": "v1", "published": "2016-06-13T21:04:36.000Z", "updated": "2016-06-13T21:04:36.000Z", "title": "Combinatorial proof of the transcendence of $L(1,χ_s)/Π$", "authors": [ "Yining Hu" ], "categories": [ "math.CO", "math.NT" ], "abstract": "We give a combinatorial proof of the transcendence of $L(1,\\chi_s)/\\Pi$, where $L(1,\\chi_s)$ (resp. $\\Pi$) is the analogue in characteristic $p$ of the function $L$ of Dirichlet (resp. $\\pi$). This result has been proven by G. Damamme using the criteria of de Mathan. Our proof is based on the Theorem of Christol and another property of $k$-automatic sequences.", "revisions": [ { "version": "v1", "updated": "2016-06-13T21:04:36.000Z" } ], "analyses": { "keywords": [ "combinatorial proof", "transcendence", "automatic sequences", "characteristic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }