{ "id": "1606.03733", "version": "v1", "published": "2016-06-12T15:47:30.000Z", "updated": "2016-06-12T15:47:30.000Z", "title": "On the $a$-points of the derivatives of the Riemann zeta function", "authors": [ "Tomokazu Onozuka" ], "comment": "22 pages", "categories": [ "math.NT" ], "abstract": "We prove three results on the $a$-points of the derivatives of the Riemann zeta function. The first result is a formula of the Riemann-von Mangoldt type; we estimate the number of the $a$-points of the derivatives of the Riemann zeta function. The second result is on certain exponential sum involving $a$-points. The third result is an analogue of the zero density theorem. We count the $a$-points of the derivatives of the Riemann zeta function in $1/2-(\\log\\log T)^2/\\log T<\\Re s<1/2+(\\log\\log T)^2/\\log T$.", "revisions": [ { "version": "v1", "updated": "2016-06-12T15:47:30.000Z" } ], "analyses": { "subjects": [ "11M06" ], "keywords": [ "riemann zeta function", "derivatives", "riemann-von mangoldt type", "zero density theorem", "first result" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }