{ "id": "1606.03573", "version": "v1", "published": "2016-06-11T09:47:54.000Z", "updated": "2016-06-11T09:47:54.000Z", "title": "Scalar products of Bethe vectors in models with $\\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation", "authors": [ "A. Hutsalyuk", "A. Liashyk", "S. Z. Pakuliak", "E. Ragoucy", "N. A. Slavnov" ], "comment": "22 pages", "categories": [ "math-ph", "cond-mat.str-el", "hep-th", "math.MP" ], "abstract": "We study integrable models with $\\mathfrak{gl}(2|1)$ symmetry and solvable by nested algebraic Bethe ansatz. We obtain a determinant representation for scalar products of Bethe vectors, when the Bethe parameters obey some relations weaker than the Bethe equations. This representation allows us to find the norms of on-shell Bethe vectors and obtain determinant formulas for form factors of the diagonal entries of the monodromy matrix.", "revisions": [ { "version": "v1", "updated": "2016-06-11T09:47:54.000Z" } ], "analyses": { "keywords": [ "scalar products", "determinant representation", "on-shell bethe vectors", "bethe parameters obey", "nested algebraic bethe ansatz" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }