{ "id": "1606.03340", "version": "v1", "published": "2016-06-10T14:23:53.000Z", "updated": "2016-06-10T14:23:53.000Z", "title": "Sparse domination on non-homogeneous spaces with an application to $A_p$ weights", "authors": [ "Alexander Volberg", "Pavel Zorin-Kranich" ], "comment": "11 pages", "categories": [ "math.CA", "math.AP" ], "abstract": "We extend Lerner's recent approach to sparse domination of Calder\\'on--Zygmund operators to upper doubling (but not necessarily doubling), geometrically doubling metric measure spaces. Our domination theorem is different from the one obtained recently by Conde-Alonso and Parcet and yields a weighted estimate with the sharp power $\\max(1,1/(p-1))$ of the $A_p$ characteristic of the weight.", "revisions": [ { "version": "v1", "updated": "2016-06-10T14:23:53.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "sparse domination", "non-homogeneous spaces", "application", "geometrically doubling metric measure spaces", "sharp power" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }