{ "id": "1606.03076", "version": "v1", "published": "2016-06-09T19:32:02.000Z", "updated": "2016-06-09T19:32:02.000Z", "title": "Convergence Rate for Spectral Distribution of Addition of Random Matrices", "authors": [ "Zhigang Bao", "Laszlo Erdos", "Kevin Schnelli" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "Let $A$ and $B$ be two $N$ by $N$ deterministic Hermitian matrices and let $U$ be an $N$ by $N$ Haar distributed unitary matrix. It is well known that the spectral distribution of the sum $H=A+UBU^*$ converges weakly to the free additive convolution of the spectral distributions of $A$ and $B$, as $N$ tends to infinity. We establish the optimal convergence rate ${\\frac{1}{N}}$ in the bulk of the spectrum.", "revisions": [ { "version": "v1", "updated": "2016-06-09T19:32:02.000Z" } ], "analyses": { "keywords": [ "spectral distribution", "random matrices", "optimal convergence rate", "deterministic hermitian matrices", "haar distributed unitary matrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }