{ "id": "1606.02512", "version": "v1", "published": "2016-06-08T11:21:35.000Z", "updated": "2016-06-08T11:21:35.000Z", "title": "Existence and Concentration Solutions for a class of elliptic PDEs involving $p$-biharmonic Operator", "authors": [ "Ratan Kr Giri", "Debajyoti Choudhuri", "Shesadev Pradhan" ], "categories": [ "math.AP" ], "abstract": "In this paper, we propose an existence result pertaining to a nontrivial solution to the problem \\begin{align*} \\Bigg\\{\\begin{split} & \\Delta^2_p u -\\Delta_p u + \\lambda V(x)|u|^{p-2}u = f(x,u)\\,,\\,x\\in \\mathbb{R}^N, & u \\in W^{2,p}(\\mathbb{R}^N), \\end{split} \\end{align*} where $\\lambda>0$, $p>1, N>2p$ and $V\\in C(\\mathbb{R}^N, \\mathbb{R}^+)$, $f\\in C(\\mathbb{R}^N \\times \\mathbb{R},\\mathbb{R})$ with certain properties. We also investigate the concentration of solutions to the problem on the set $V^{-1}(0)$ as $\\lambda \\rightarrow \\infty$.", "revisions": [ { "version": "v1", "updated": "2016-06-08T11:21:35.000Z" } ], "analyses": { "subjects": [ "35J35", "35J60", "35J92" ], "keywords": [ "biharmonic operator", "elliptic pdes", "concentration solutions", "nontrivial solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }