{ "id": "1606.02195", "version": "v1", "published": "2016-06-07T16:09:10.000Z", "updated": "2016-06-07T16:09:10.000Z", "title": "Some isoperimetric inequalities on $\\mathbb{R} ^N$ with respect to weights $|x|^α$", "authors": [ "A. Alvino", "F. Brock", "F. Chiacchio", "A. Mercaldo", "M. R. Posteraro" ], "categories": [ "math.FA" ], "abstract": "We solve a class of isoperimetric problems on $\\mathbb{R}^N $ with respect to weights that are powers of the distance to the origin. For instance we show that if $k\\in [0,1]$, then among all smooth sets $\\Omega$ in $\\mathbb{R} ^N$ with fixed Lebesgue measure, $\\int_{\\partial \\Omega } |x|^k \\, \\mathscr{H}_{N-1} (dx)$ achieves its minimum for a ball centered at the origin. Our results also imply a weighted Polya-Sz\\\"ego principle. In turn, we establish radiality of optimizers in some Caffarelli-Kohn-Nirenberg inequalities, and we obtain sharp bounds for eigenvalues of some nonlinear problems.", "revisions": [ { "version": "v1", "updated": "2016-06-07T16:09:10.000Z" } ], "analyses": { "subjects": [ "51M16", "46E35", "46E30", "35P15" ], "keywords": [ "isoperimetric inequalities", "sharp bounds", "isoperimetric problems", "caffarelli-kohn-nirenberg inequalities", "nonlinear problems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }