{ "id": "1606.01967", "version": "v1", "published": "2016-06-06T22:37:58.000Z", "updated": "2016-06-06T22:37:58.000Z", "title": "$\\mathfrak G$-bases in free (locally convex) topological vector spaces", "authors": [ "Taras Banakh", "Arkady Leiderman" ], "comment": "24 pages", "categories": [ "math.GN", "math.FA", "math.LO" ], "abstract": "We characterize topological (and uniform) spaces whose free (locally convex) topological vector spaces have a local $\\mathfrak G$-base. A topological space $X$ has a local $\\mathfrak G$-base if every point $x$ of $X$ has a neighborhood base $(U_\\alpha)_{\\alpha\\in\\omega^\\omega}$ such that $U_\\beta\\subset U_\\alpha$ for all $\\alpha\\le\\beta$ in $\\omega^\\omega$. To construct $\\mathfrak G$-bases in free topological vector spaces, we exploit a new description of the topology of a free topological vector space over a topological (or more generally, uniform) space.", "revisions": [ { "version": "v1", "updated": "2016-06-06T22:37:58.000Z" } ], "analyses": { "subjects": [ "54D70", "54D45", "46A03", "06A06", "54A35", "54C30", "54E15", "54E20", "54E35" ], "keywords": [ "locally convex", "free topological vector space", "neighborhood base", "topological space", "description" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }