{ "id": "1606.01098", "version": "v1", "published": "2016-06-03T14:21:20.000Z", "updated": "2016-06-03T14:21:20.000Z", "title": "Highlights from \"The Ramanujan Property for Simplicial Complexes\" [arXiv:1605.02664]", "authors": [ "Uriya A. First" ], "comment": "23 pages. Comments are welcome", "categories": [ "math.CO", "math.NT", "math.RT" ], "abstract": "This paper brings the main definitions and results from \"The Ramanujan Property for Simplicial Complexes\" [arXiv:1605.02664]. No proofs are given. Given a simplicial complex $\\mathcal{X}$ and a group $G$ acting on $\\mathcal{X}$, we define Ramanujan quotients of $\\mathcal{X}$. For $G$ and $\\mathcal{X}$ suitably chosen this recovers Ramanujan $k$-regular graphs and Ramanujan complexes in the sense of Lubotzky, Samuels and Vishne. Deep results in automorphic representations are used to give new examples of Ramanujan quotients when $\\mathcal{X}$ is the affine building of an inner form of $\\mathbf{GL}_n$ over a local field of positive characteristic.", "revisions": [ { "version": "v1", "updated": "2016-06-03T14:21:20.000Z" } ], "analyses": { "keywords": [ "simplicial complex", "ramanujan property", "highlights", "define ramanujan quotients", "regular graphs" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }