{ "id": "1606.00738", "version": "v1", "published": "2016-06-02T16:03:43.000Z", "updated": "2016-06-02T16:03:43.000Z", "title": "Product of octahedra is badly approximated in the $\\ell_{2,1}$-metric", "authors": [ "Yu. V. Malykhin", "K. S. Ryutin" ], "categories": [ "math.FA" ], "abstract": "We prove that the cartesian product of octahedra $B_{1,\\infty}^{n,m}=B_1^n\\times\\ldots\\times B_1^n$ ($m$ octahedra) is badly approximated by half--dimensional subspaces in mixed--norm: $d_{N/2}(B_{1,\\infty}^{n,m},\\ell_{2,1}^{n,m})\\ge cm$, $N=mn$. As a corollary the orders for linear widths of H\\\"older--Nikolskii classes $H^r_p(\\mathbb T^d)$ in the $L_q$ metric are obtained for $(p,q)$ in a certain set (a domain in the parameter space).", "revisions": [ { "version": "v1", "updated": "2016-06-02T16:03:43.000Z" } ], "analyses": { "keywords": [ "cartesian product", "half-dimensional subspaces", "linear widths", "parameter space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }