{ "id": "1605.09634", "version": "v1", "published": "2016-05-31T13:53:42.000Z", "updated": "2016-05-31T13:53:42.000Z", "title": "Upper bounds for the dominant dimension of Nakayama and related algebras", "authors": [ "Rene Marczinzik" ], "comment": "24 pages", "categories": [ "math.RT" ], "abstract": "Optimal upper bounds are provided for the dominant dimensions of Nakayama algebras and more generally algebras $A$ with an idempotent $e$ such that there is a minimal faithful injective-projective module $eA$ and such that $eAe$ is a Nakayama algebra. This answers a question of Abrar and proves a conjecture of Yamagata in this case.", "revisions": [ { "version": "v1", "updated": "2016-05-31T13:53:42.000Z" } ], "analyses": { "subjects": [ "16G10", "16E10" ], "keywords": [ "dominant dimension", "related algebras", "nakayama algebra", "optimal upper bounds", "minimal faithful injective-projective module" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }