{ "id": "1605.09342", "version": "v1", "published": "2016-05-30T17:52:00.000Z", "updated": "2016-05-30T17:52:00.000Z", "title": "Cohomology of Lie algebras of polynomial vector fields on the line over field of characteristic $2$", "authors": [ "Felix V. Weinstein" ], "comment": "8 pages", "categories": [ "math.RT" ], "abstract": "For a field $\\mathbb{F}$, let $L_k(\\mathbb{F})$ be the Lie algebra of derivations $f(t)\\frac{d}{dt}$ of the polynomial ring $\\mathbb{F}[t]$, where $f(t)$ is a polynomial of degree $>k$. For any $k\\>1$, we build a basis of the space of continuous cohomology of the Lie algebra $L_k(\\mathbb{F})$ with coefficients in the trivial module $\\mathbb{F}$ for the case where ${\\rm char}(\\mathbb{F})=2$. The result obtained is similar to the famous Goncharova's Theorem for the case ${\\rm char}(\\mathbb{F})=0$.", "revisions": [ { "version": "v1", "updated": "2016-05-30T17:52:00.000Z" } ], "analyses": { "subjects": [ "17B56" ], "keywords": [ "polynomial vector fields", "lie algebra", "characteristic", "trivial module", "famous goncharovas theorem" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }