{ "id": "1605.09095", "version": "v1", "published": "2016-05-30T03:46:49.000Z", "updated": "2016-05-30T03:46:49.000Z", "title": "Orbital stability and uniqueness of the ground state for NLS in dimension one", "authors": [ "Daniele Garrisi", "Vladimir Georgiev" ], "comment": "22 pages", "categories": [ "math.AP" ], "abstract": "We prove that standing-waves solutions to the non-linear Schr\\\"odinger equation in dimension one whose profiles can be obtained as minima of the energy over the mass, are orbitally stable and non-degenerate, provided the non-linear term $ G $ satisfies a Euler differential inequality. When the non-linear term $ G $ is a combined pure power-type, then there is only one positive, symmetric minimum of prescribed mass.", "revisions": [ { "version": "v1", "updated": "2016-05-30T03:46:49.000Z" } ], "analyses": { "subjects": [ "35Q55", "47J35" ], "keywords": [ "ground state", "orbital stability", "uniqueness", "non-linear term", "euler differential inequality" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }