{ "id": "1605.08903", "version": "v1", "published": "2016-05-28T15:36:11.000Z", "updated": "2016-05-28T15:36:11.000Z", "title": "On the Dynamics of Rational Maps with Two Free Critical Points", "authors": [ "HyeGyong Jang", "Norbert Steinmetz" ], "comment": "12 pages, 4 figures", "categories": [ "math.DS" ], "abstract": "In this paper we discuss the dynamical structure of the rational family $(f_t)$ given by $$f_t(z)=tz^{m}\\Big(\\frac{1-z}{1+z}\\Big)^{n}\\quad(m\\ge 2,~t\\ne 0).$$ Each map $f_t$ has two super-attracting immediate basins and two free critical points. We prove that for $0<|t|\\le 1$ and $|t|\\ge 1$, either of these basins is completely invariant and at least one of the free critical points is inactive. Based on this separation we draw a detailed picture the structure of the dynamical and the parameter plane.", "revisions": [ { "version": "v1", "updated": "2016-05-28T15:36:11.000Z" } ], "analyses": { "subjects": [ "37F10", "37F15", "37F45" ], "keywords": [ "free critical points", "rational maps", "super-attracting immediate basins", "parameter plane", "dynamical structure" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }