{ "id": "1605.08767", "version": "v1", "published": "2016-05-27T19:35:40.000Z", "updated": "2016-05-27T19:35:40.000Z", "title": "Local law and Tracy-Widom limit for sparse random matrices", "authors": [ "Ji Oon Lee", "Kevin Schnelli" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We consider spectral properties and the edge universality of sparse random matrices, the class of random matrices that includes the adjacency matrices of the Erd\\H{o}s-R\\'enyi graph model $G(N,p)$. We prove a local law for the eigenvalue density up to the spectral edges. Under a suitable condition on the sparsity, we also prove that the rescaled extremal eigenvalues exhibit GOE Tracy-Widom fluctuations if a deterministic shift of the spectral edge due to the sparsity is included. For the adjacency matrix of the Erd\\H{o}s-R\\'{e}nyi graph this establishes the Tracy-Widom fluctuations of the second largest eigenvalue for $p\\gg N^{-1/3}$ with a deterministic shift of order $(Np)^{-1}$.", "revisions": [ { "version": "v1", "updated": "2016-05-27T19:35:40.000Z" } ], "analyses": { "subjects": [ "46L54", "60B20" ], "keywords": [ "sparse random matrices", "local law", "tracy-widom limit", "deterministic shift", "spectral edge" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }