{ "id": "1605.08718", "version": "v1", "published": "2016-05-27T17:20:41.000Z", "updated": "2016-05-27T17:20:41.000Z", "title": "Indices of fixed points not accumulated by periodic points", "authors": [ "Luis Hernandez-Corbato" ], "comment": "11 pages, 2 figures. Final version to appear in Topol. Methods Nonlinear Anal", "categories": [ "math.DS" ], "abstract": "We prove that for every integer sequence $I$ satisfying Dold relations there exists a map $f : \\mathbb{R}^d \\to \\mathbb{R}^d$, $d \\ge 2$, such that $\\mathrm{Per(f)} = \\mathrm{Fix(f)} = \\{o\\}$, where $o$ denotes the origin, and $(i(f^n, o))_n = I$.", "revisions": [ { "version": "v1", "updated": "2016-05-27T17:20:41.000Z" } ], "analyses": { "keywords": [ "periodic points", "fixed points", "integer sequence", "satisfying dold relations" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }