{ "id": "1605.08691", "version": "v1", "published": "2016-05-27T15:37:21.000Z", "updated": "2016-05-27T15:37:21.000Z", "title": "Stockwell-Like Frames for Sobolev Spaces", "authors": [ "Ubertino Battisti", "Michele Berra", "Anita Tabacco" ], "comment": "28 pages, 8 figures", "categories": [ "math.FA" ], "abstract": "We construct a family of frames describing Sobolev norm and Sobolev seminorm of the space $H^s(\\mathbb{R}^d)$. Our work is inspired by the Discrete Orthonormal Stockwell Transform introduced by R.G. Stockwell, which provides a time-frequency localized version of Fourier basis of $L^2([0,1])$. This approach is a hybrid between Gabor and Wavelet frames. We construct explicit and computable examples of these frames, discussing their properties.", "revisions": [ { "version": "v1", "updated": "2016-05-27T15:37:21.000Z" } ], "analyses": { "keywords": [ "sobolev spaces", "stockwell-like frames", "discrete orthonormal stockwell transform", "wavelet frames", "fourier basis" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }