{ "id": "1605.08545", "version": "v1", "published": "2016-05-27T08:55:07.000Z", "updated": "2016-05-27T08:55:07.000Z", "title": "On certain representations of the general linear group over a non-archimedean local field", "authors": [ "Erez Lapid", "Alberto Minguez" ], "categories": [ "math.RT" ], "abstract": "Let $\\pi$ be an irreducible, complex, smooth representation of $GL_n$ over a local non-archimedean (skew) field. We give a simple combinatorial sufficient condition for the irreducibility of the parabolic induction of $\\pi\\otimes\\pi$ to $GL_{2n}$. The latter irreducibility property is the $p$-adic analogue of a special case of the notion of \"real representations\" introduced by Leclerc and studied recently by Kang--Kashiwara--Kim--Oh (in the context of KLR algebras). Our sufficient condition is closely related to singularities of Schubert varieties of type $A$.", "revisions": [ { "version": "v1", "updated": "2016-05-27T08:55:07.000Z" } ], "analyses": { "keywords": [ "general linear group", "non-archimedean local field", "simple combinatorial sufficient condition", "real representations", "special case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }