{ "id": "1605.07424", "version": "v1", "published": "2016-05-24T12:43:41.000Z", "updated": "2016-05-24T12:43:41.000Z", "title": "On the p-adic valuation of Stirling numbers of the first kind", "authors": [ "Paolo Leonetti", "Carlo Sanna" ], "comment": "12 pages, 3 figures", "categories": [ "math.NT", "math.CO" ], "abstract": "For all integers $n \\geq k \\geq 1$, define $H(n,k) := \\sum 1 / (i_1 \\cdots i_k)$, where the sum is extended over all positive integers $i_1 < \\cdots < i_k \\leq n$. These quantities are closely related to the Stirling numbers of the first kind by the identity $H(n,k) = s(n + 1, k + 1) / n!$. Motivated by the works of Erd\\H{o}s-Niven and Chen-Tang, we study the $p$-adic valuation of $H(n,k)$. In particular, for any prime number $p$, integer $k \\geq 2$, and $x \\geq (k-1)p$, we prove that $\\nu_p(H(n,k)) < -(k - 1)(\\log_p(n/(k - 1)) - 1)$ for all positive integers $n \\in [(k-1)p, x]$ whose base $p$ representations start with the base $p$ representation of $k - 1$, but at most $3x^{0.835}$ exceptions. We also generalize a result of Lengyel by giving a description of $\\nu_2(H(n,2))$ in terms of an infinite binary sequence.", "revisions": [ { "version": "v1", "updated": "2016-05-24T12:43:41.000Z" } ], "analyses": { "subjects": [ "11B73", "11B50", "11A51" ], "keywords": [ "first kind", "stirling numbers", "p-adic valuation", "positive integers", "infinite binary sequence" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }