{ "id": "1605.07388", "version": "v1", "published": "2016-05-24T11:48:38.000Z", "updated": "2016-05-24T11:48:38.000Z", "title": "Threshold and strong threshold solutions of a semilinear parabolic equation", "authors": [ "Pavol Quittner" ], "categories": [ "math.AP" ], "abstract": "If $p>1+2/n$ then the equation $u_t-\\Delta u = u^p, \\quad x\\in{\\mathbb R}^n,\\ t>0,$ possesses both positive global solutions and positive solutions which blow up in finite time. We study the large time behavior of radial positive solutions lying on the borderline between global existence and blow-up.", "revisions": [ { "version": "v1", "updated": "2016-05-24T11:48:38.000Z" } ], "analyses": { "subjects": [ "35K55", "35K57", "35B40" ], "keywords": [ "strong threshold solutions", "semilinear parabolic equation", "large time behavior", "finite time", "positive global solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }