{ "id": "1605.07200", "version": "v1", "published": "2016-05-23T20:08:43.000Z", "updated": "2016-05-23T20:08:43.000Z", "title": "A new generalisation of Macdonald polynomials", "authors": [ "Alexandr Garbali", "Jan de Gier", "Michael Wheeler" ], "comment": "26 pages, LaTeX", "categories": [ "math-ph", "math.CO", "math.MP", "math.QA", "math.RT" ], "abstract": "We introduce a new family of symmetric multivariate polynomials, whose coefficients are meromorphic functions of two parameters $(q,t)$ and polynomial in a further two parameters $(u,v)$. We evaluate these polynomials explicitly as a matrix product. At $u=v=0$ they reduce to Macdonald polynomials, while at $q=0$, $u=v=s$ they recover a family of inhomogeneous symmetric functions originally introduced by Borodin.", "revisions": [ { "version": "v1", "updated": "2016-05-23T20:08:43.000Z" } ], "analyses": { "keywords": [ "macdonald polynomials", "generalisation", "symmetric multivariate polynomials", "inhomogeneous symmetric functions", "matrix product" ], "note": { "typesetting": "LaTeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }