{ "id": "1605.07113", "version": "v1", "published": "2016-05-23T17:37:01.000Z", "updated": "2016-05-23T17:37:01.000Z", "title": "Global Existence for a Nonlinear System with Fractional Laplacian in Banach Space", "authors": [ "Miguel Loayza", "Paulo R. F. S. Silva" ], "categories": [ "math.AP" ], "abstract": "We consider the cauchy problem for the fractional power dissipative equation $u_t+(-\\Delta )^{\\beta/2} u=F(u)$, where $\\beta>0$ and $F(u)=B(u, ...,u)$ and $B$ is a multilinear form on a Banach space $E$. We show a global existence result assuming some properties of scaling degree of the multilinear form and the norm of the space $E$. We extend the ideas used for the treating of the equation to determine the global existence for the system $u_t+(-\\Delta)^{\\beta/2}= F(v)$, $v_t+(-\\Delta )^{\\beta/2}v=G(u)$ where $F(u)=B_1(u,...,u), G(v)=B_2(v,...,v)$", "revisions": [ { "version": "v1", "updated": "2016-05-23T17:37:01.000Z" } ], "analyses": { "keywords": [ "banach space", "nonlinear system", "fractional laplacian", "multilinear form", "fractional power dissipative equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }